
Unit 5 Chapter 14 Assignment

Grading Information: This Program is due on Date Specified.

Comments are REQUIRED; flow charts and pseudocode are NOT REQUIRED.

Directions Points

The files must be called <LiFiUnit5Ch14.java> (driver program)
LiFiAnimal.java
LiFiFox.java (which extends LiFiAnimal)
LiFiChicken.java (which extends LiFiAnimal)

The files must be called as specified above, (LiFi = Your Last Initial Your First Initial)

Proper coding conventions required the first letter of the class start with a capital
letter and the first letter of each additional word start with a capital letter.

Only submit the .java files needed to make the program run. Do not submit the
.class files or any other files.

5%

Style Components

Include properly formatted prologue, comments, indenting, and other style elements
as shown in Chapter 2 starting page 64 and Appendix 5 page 881-892.

5%

Topics covered in chapter

Topics with * are covered in this assignment.

*Object class
*equals method
toString method
*Polymorphism
Abstract
*Interfaces
Protected access modifier

Basic Requirements

Write a program that simulates the battle between a fox and chickens.

Use this class hierarchy:

Fox

x Kills 1 chicken a day

20%

x Does not reproduce

Chicken

x Have a chance to reproduce as long as conditions are met
x Reproduction only happens when chickens are over 1 and 1 of each sex is

present

Simulation Control

x Simulation continues as long as chicken population is greater than 1 and less
than or equal 10
x (if 1 or less, mating can’t happen. If > 10, chickens will overrun the fox)

Driver main method should be as shown below: (replacing comment with missing
output piece and replacing LiFi with your initials. Add prologue and additional
comments to explain functionality.)

import java.util.ArrayList;

public class LiFiUnit5Ch14
{
 public static void main(String [] args)
 {
 for(int count=0; count<10; count++)
 {
 LiFiFox foxy = new LiFiFox();
 ArrayList< LiFiChicken > chickens = new
 ArrayList<LiFiChicken>();
 chickens.clearn();
 chickens.add(new LiFiChicken());
 chickens.add(new LiFiChicken ());
 chickens.add(new LiFiChicken ());
 chickens.get(0).setSex(true);
 chickens.get(1).setSex(false);
 chickens.get(2).setSex(false);

 while (chickens.size() >1 && chickens.size() < 10)
 {
 for (LiFiChicken c:chickens)
 c.grow();

 foxy.grow();
 LiFiChicken.mate(chickens);
 foxy.eat(chickens);
 }
 //INCLUDE CODE FOR OUTPUT HERE.
 }
}

Output code should output:

Depending on if the population of chickens is less than 1 and greater than or equal
10:

Chickens win - Chicken Population: ## (integer value)
or
Fox wins - Fox Weight (in chickens): ##.## (double value, 2 decimal places)

Output should repeat 10 times.
See sample output below.

LiFiAnimal.java

Instance variables:
name (string)
age (integer)
weight (double)
isMale (Boolean)

LiFiAnimal constructor : (default constructor)
Set age to 1.

grow method :

Increases age of LiFiAnimal by 1.

Accessor / mutator methods for each instance variable above:
Set or returns values as appropriate for data type specified.

10%

LiFiFox.java class

eat method: (receive chickens arraylist as argument)
Randomly removes a chicken from the population 70% of the time and increases
fox weight by the chosen chicken weight. Only increase weight if chicken is

30%

removed/eaten.

grow method:

Set the fox age to the current age plus 1. (use accessor/mutator methods)

LiFiChicken.java class

LiFiChicken constructor: (default constructor)
Randomly choose sex and assign to isMale as appropriate.
Set age to 1.
Set weight to 1.

grow method:

Increase age of chicken by 1 and weight of chicken by 1% of current weight.

mate method: (static method, receive chicken arraylist as argument)

Randomly choose 2 chicken objects from arraylist and if conditions are correct,
proceed with mating.
Successful mating conditions are:

x 1 male and 1 female chicken

x Both chickens older than 1 day

� If successful mating, randomly create between 0-4 chickens and
append to arraylist received as argument

30%

NOTE: Complete your activity and submit it by clicking “Submit Assignment”

Total Percentage 100%

Sample
Your output will vary based on the random numbers generated.

Sample session (requires no user input):

