Unit 5 Chapter 14 Assignment
Grading Information: This Program is due on Date Specified.

Comments are REQUIRED; flow charts and pseudocode are NOT REQUIRED.

Directions Points

The files must be called <LiFiUnit5Ch14.java> (driver program)
LiFiAnimal.java

LiFiFox.java (which extends LiFiAnimal)

LiFiChicken.java (which extends LiFiAnimal)

The files must be called as specified above, (LiFi = Your Last Initial Your First Initial) 59,

Proper coding conventions required the first letter of the class start with a capital
letter and the first letter of each additional word start with a capital letter.

Only submit the .java files needed to make the program run. Do not submit the
.class files or any other files.

Style Components

(o)
Include properly formatted prologue, comments, indenting, and other style elements 5%

as shown in Chapter 2 starting page 64 and Appendix 5 page 881-892.
Topics covered in chapter

Topics with * are covered in this assignment.

*Object class

*equals method

toString method
*Polymorphism

Abstract

*Interfaces

Protected access modifier

Basic Requirements

Write a program that simulates the battle between a fox and chickens.

20%
Use this class hierarchy: °

Fox
e Kills 1 chicken a day



e Does not reproduce

Chicken
e Have a chance to reproduce as long as conditions are met
e Reproduction only happens when chickens are over 1 and 1 of each sex is
present

Simulation Control
e Simulation continues as long as chicken population is greater than 1 and less
than or equal 10
e (if 1 or less, mating can’t happen. If > 10, chickens will overrun the fox)

Driver main method should be as shown below: (replacing comment with missing
output piece and replacing LiFi with your initials. Add prologue and additional
comments to explain functionality.)

import java.util.ArrayList;

public class LiFiUnit5Chl4
{
public static void main (String [] args)
{
for (int count=0; count<1l0; count++)
{
LiFiFox foxy = new LiFiFox();
ArrayList< LiFiChicken > chickens = new
ArrayList<LiFiChicken> () ;
chickens.clearn();
chickens.add (new LiFiChicken());
new LiFiChicken ());
new LiFiChicken ())

chickens.add
chickens.add ;
0) .setSex (true);

1) .setSex (false);
2

) .setSex (false) ;

(
(
chickens.get (
chickens.get (

(

chickens.get

while (chickens.size () >1 && chickens.size () < 10)

{

for (LiFiChicken c:chickens)
c.grow () ;



foxy.grow () ;
LiFiChicken.mate (chickens) ;
foxy.eat (chickens);

//INCLUDE CODE FOR OUTPUT HERE.

}
Output code should output:

Depending on if the population of chickens is less than 1 and greater than or equal
10:

Chickens win - Chicken Population: ## (integer value)
or
Fox wins - Fox Weight (in chickens): ##.## (double value, 2 decimal places)

Output should repeat 10 times.
See sample output below.

LiFiAnimal.java

Instance variables:

name (string)
age (integer)
weight (double)
isMale (Boolean)

LiFiAnimal constructor : (default constructor) .
Set age to 1. 10%

grow method :
Increases age of LiFiAnimal by 1.

Accessor / mutator methods for each instance variable above:
Set or returns values as appropriate for data type specified.

LiFiFox.java class

eat method: (receive chickens arraylist as argument) 30%
Randomly removes a chicken from the population 70% of the time and increases
fox weight by the chosen chicken weight. Only increase weight if chicken is



removed/eaten.

grow method:
Set the fox age to the current age plus 1. (use accessor/mutator methods)

LiFiChicken.java class

LiFiChicken constructor: (default constructor)
Randomly choose sex and assign to isMale as appropriate.
Set age to 1.
Set weight to 1.

grow method:
Increase age of chicken by 1 and weight of chicken by 1% of current weight.

30%
mate method: (static method, receive chicken arraylist as argument)
Randomly choose 2 chicken objects from arraylist and if conditions are correct,
proceed with mating.
Successful mating conditions are:
e 1 male and 1 female chicken
e Both chickens older than 1 day
» |f successful mating, randomly create between 0-4 chickens and
append to arraylist received as argument
NOTE: Complete your activity and submit it by clicking “Submit Assignment”
Total Percentage 100%

Sample
Your output will vary based on the random numbers generated.

Sample session (requires no user input) :

Weight <in chickens>»: 2.04
Weight <in chickens>»: 2.83
Chicken Population: 12
Weight <in chickens>»: 11.3%7
Weight <in chickens>»: 7.21

Weight <in chickens>»: 2.83
Chicken Population: 12
Chicken Population: 11
Weight <in chickens>»: 7.25
Chicken Population: 11




